Connect with us

Manufacturing

3D printers creating car factories of the future

Published

on

3D printing. Photo courtesy HP
Photo courtesy HP
Share this:

The future for many industries is the 3D printer and the future factory will be composed of several industrial-sized printers. The car and automotive sector is one area likely to be affected. We survey the technologies.

One industrial area being revolutionized by 3D printing is the automotive sector. The application of the technology to the automotive sector remains relatively new. It was only back in 2014 that Local Motors printed the first 3D-printed car from an ABS carbon-fiber blend (about 80/20 respectively).

The car was called Strati. This was followed in 2016 when Honda released a new version of its Micro-Commuter car. Other car manufactures have followed, not necessarily printing entire cars but key components. The main drivers are consistency, reliability and a consistent reduction in lead-time.

A new report, titled “Global 3D Printing Automotive Market Analysis & Trends – Industry Forecast to 2025” predicts a 10 percent growth in the use of 3D printers to create most of the parts that go towards making cars and lorries by 2025. There are different types of 3D printing technologies being taken up by the automotive sector. These include electron beam melting, fused disposition modeling, laminated object manufacturing, three dimensional inject printing, stereolithography, and selective laser sintering. These are complex sounding words, what do they mean?

Electron Beam Melting is a high technology form additive manufacturing which uses an electron beam instead of a laser or thermal printhead. The process is commonly used for the production of incredibly dense metal parts.

Fused disposition modeling is an additive manufacturing(AM) technology commonly used for modeling, prototyping, and production applications. With the process a plastic filament or metal wire is unwound from a coil and supplies material to produce a part.

Laminated object manufacturing involves layers of adhesive-coated paper, plastic, or metal laminates being successively glued together and cut to shape with a knife or laser cutter.

3D inject printing involves recreating a 3D digital image by propelling droplets of ink successively to a substrate.

Stereolithography is a process for creating three-dimensional objects, in which a computer-controlled moving laser beam is used to build up the required structure, layer by layer, from a liquid polymer that hardens on contact with laser light.

Selective laser sintering uses a laser as the power source to sinter powdered material, aiming the laser automatically at points in space defined by a 3D model, binding the material together to create a solid structure.

What is interesting about many of these applications of additive manufacturing to the automotive industry is that they are being used to create lower cost (and more affordable) personalized cars.

Other manufacturers are using the digital technology to prototype, test, and produce all manner of tools, jigs, fixtures, and street-ready parts. While the technology still remains in its infancy for car manufacturers, the application of 3D printers is key to the digital transformation of the automobile sector.

Share this:

Manufacturing

Distributed Manufacturing: Next in line for blockchain innovation

Blockchain has already disrupted business processes in the financial sector, and is poised to impact companies across industries.

Cognizant

Published

on

Share this:

Sponsored by Cognizant

By: Jagmeet Singh

Blockchain has already disrupted business processes in the financial sector, and is poised to impact companies across industries. Because the technology can provide an immutable digital record of contractual interactions and transactions across an ecosystem, we believe that manufacturing is likely next in line.

Blockchain is a mutually shared ledger of all transactions in a given transactional relationship. Combined with its consensus mechanisms and use of public key infrastructure (PKI) to verify and authenticate all changes made to the ledger, blockchain can enable the network itself to ensure trust among participants. The result: a whole new way to support distributed manufacturing across the value chain.

The Importance of Trust

Consider, for example, the ways in which blockchain can simplify how trust is developed within a manufacturing ecosystem. In the traditional manufacturing world, parties transacting with each other spend considerable time and money on establishing external mechanisms to ensure trust, in the form of contracts, service-level agreements, quality checks, inspections, audits, scanning, escrows and regulatory compliance reviews, to name a few. As the number of parties increases, so does the complexity. Reconciling separate ledgers, enforcing contracts, ensuring supply chain transparency and protecting intellectual property when multiple entities are involved are all laborious and burdensome processes, prone to error and vulnerable to fraud.

Related: Blockchain in Manufacturing: Enhancing Trust, Cutting Costs and Lubricating Processes across the Value Chain

Research shows that companies that build a culture of trust can fuel stronger performance by enabling departments to interact better and perform better across multiple dimensions. Establishing trust betweencontracted parties has similar positive effects. All these measures, however, amount to a costly “trust tax.”

For participants in a blockchain network – product designers, production shops, 3-D printers, logistics partners, sales and customer service  – that tax is greatly reduced. A secure, distributed ledger infrastructure accessible to multiple parties enables a new level of real-time transparency and efficiency for transactions involving the transfer of anything of value – whether that means ideas, money or ownership.

In our recent global study that included 281 manufacturing professionals, in fact, “trust” was a top driver for blockchain adoption.

Distributed Manufacturing Next in Line for Blockchain Innovation

Ensuring Transparency, Security, Auditability

Blockchain ledgers are:

  • Shared: Separate entities share a common source of truth.
  • Distributed: Blockchain relies on peer-to-peer collaboration, with no central ownership.
  • Secure: Cryptographic algorithms verify, authenticate and secure transactions.
  • Time-sequenced: Data is written consecutively and is time-stamped.
  • Immutable: Once written on the blockchain, data cannot be changed, tampered with or deleted.

Through smart contracts with supply chain partners on the blockchain network – programmed agreements that are independently verifiable and automatically executed when predefined conditions are met – companies can minimize human intervention and ensure performance transparency, transaction certainty and auditability.

[Download]: Blockchain in Manufacturing: Enhancing Trust, Cutting Costs and Lubricating Processes across the Value Chain

Within industries and even across interlocked, tiered manufacturing sectors, distributed ledger systems allow companies to develop new, platform-based process flows. A user might execute a smart contract for a custom-configured order, for example, combining designs from multiple sources. The encrypted design data would be recorded on the shared platform; materials and services could be autonomously sourced; and a shared factory could produce the customized product. Payments, including royalties to designers, would be issued when the product is delivered. A record of all transactions, from design selection to payment, remains on the blockchain.

A Rising Tide Lifts All Boats

Blockchain technology thus enables distributed manufacturing, offering participants unprecedented opportunities to develop new product and service lines, create new customer segments, enter new markets and find new ways to use and share assets:

  • Through supply chain transparency. All parties transact on a common platform, gaining real-time visibility into processes in the value chain, and simplifying materials sourcing and the interaction of design, manufacturers and other service providers. Supply chain processes, including payments and trade finance, can be streamlined and automated using smart contracts.
  • Through digital product memories. Immutable records of asset provenance, materials, production data, ownership and other data ensure authenticity and minimize transaction risk.
  • Through secure digital intellectual property. Parties to a transaction can be assured that their intellectual property is protected. Using blockchain to manage a contracted production run from a 3-D printer of ceramic components, for example, would allow a manufacturer to encrypt proprietary 3-D print files from end to end while creating an immutable history of the transaction. Similarly, escrows and royalty accounting would protect designers and other owners of IP.

There are many more circumstances in which adopting blockchain technology can deliver value. Participants can slash inventory costs and service times. They can eliminate reconciliation, and automate and speed financial and process flows. They can reduce manual interventions and reduce fraud. And they can create new ways to extend the lifecycle of products and optimize the use of assets.

What’s Next? Evaluating Readiness

As manufacturers move toward a shared and distributed model, business leaders can consider four questions when evaluating readiness:

  1. Where in the value chain, internally and externally, are we paying the highest “trust tax” in terms of excess cost, effort or lack of agility?
  2. How would the availability of a digital product memory drive value for our company, our customers and our business partners?
  3. Which types of partners, in what geographies and with what expertise, could we work with if transaction costs and efforts were lower?
  4. Which information assets (e.g., manufacturing, maintenance, operational and usage data) about our products could we monetize if there were a secure way to do so?

A blockchain-enabled, collaborative database is optimal for ensuring agreement between all participants in a value chain. It’s time for manufacturers to examine the implications for their business model. Organizations that gain hands-on experience with blockchain technology thorugh pilot projects will have an advantage as consortia start to form, and will be better equipped to lead the effort and make key decisions around structure and governance, prepare for the corresponding cultural shift, build skills and capabilities, and understand how it will impact business strategy going forward.

Get in the blocks. The race starts now.

[Download]: Blockchain in Manufacturing: Enhancing Trust, Cutting Costs and Lubricating Processes across the Value Chain

Olesya Gorbunova, a Senior Consultant in Cognizant’s Blockchain & Distributed Ledger Practice, contributed to this blog.

This article originally appeared on the Digitally Cognizant Blog

Cognizant

Cognizant (Nasdaq: CTSH) is dedicated to helping the world’s leading companies build stronger businesses — helping them go from doing digital to being digital.

Share this:
Continue Reading

Manufacturing

When IoT meets manufacturing

Cognizant

Published

on

Share this:

Sponsored by Cognizant

By: Frank Antonysamy

One of the more negative iconic images of the Industrial Revolution was of child workers being sent into coal mines. Thankfully, that’s an age long behind us.

Our own era promises a different revolution: one in which miners no longer need to descend into the mine shaft, wield a pick, endure suffocating temperatures or constant jarring vibration, or risk their lives for underground goods like coal, gold or diamonds.

Related: How manufacturers can unlock value with IOT analytics

Tomorrow’s mines will increasingly rely on sensor-equipped, software-driven machinery, a complex technology evolution enabled by the movement toward the Internet of Things (IoT). And it’s not just mining that’s benefiting from the IoT.

While the technology sector conjures an image of silicon chips and clean rooms, processors and analytics, sensors and the cloud, manufacturers across sectors are moving toward a world of IoT-enabled intelligent products and systems.

Intelligent Solutions: There’s Gold in Them Hills

Ordering dinner through an app, calling Lyft to get to a restaurant or paying bills through a smartphone are the accepted conventions of today’s digital world. Now a new technology wave is transforming remote-operated or software-driven equipment into IoT-enabled, autonomous, self-learning machinery that reacts to changing circumstances in real time.

Driverless heavy machinery is already functioning at multinational metals and mining company Rio Tinto’s massive open-pit iron mining operations at Pilbara in Western Australia, with 400-plus-ton trucks larger than two-story houses hauling massive loads of ore and waste material. Operated from a control room hundreds of miles away, the trucks work alongside other vehicles and heavy machinery, adjusting in real time to a mine’s changing layout as ore and waste are removed.

Soon, most new mines will use pilot-less drilling machines at the coalface, equipped with sensors that allow them to follow seams of ore, monitor temperature and air quality, detect vibrations that may signal danger, and make sensor-informed decisions based on complex risk-driven algorithms.

Trucks, drilling machines, even transportation systems will be interoperable automated systems — in effect, an amalgamation of specialized systems in a single, highly complex machine. The result: more efficient operations, fewer workers exposed to risk, better performance and an improved bottom line.

The Changing Face of Manufacturing

Today’s manufacturers are actively leveraging IoT initiatives to realize internal process efficiencies. Many are changing how they design their production facilities to transform their business – streamlining production and improving productivity.

Consider a renowned heavy equipment manufacturer that has leveraged IoT in its production lines, slashing the time it takes to produce customized equipment at its U.S. facility from 42 minutes to 22 minutes. It did so by automating factory line processes and equipping them with beacons and Intel’s Retail Sensor Platform integrated with Microsoft’s Azure IoT platform. The company has doubled production times, improved quality compliance at the workstation level and boosted employee utilization by 20%.

[Download]: How manufacturers can unlock value with IOT analytics

Increasingly, the definition of a product is evolving to a broader, customer-centric construct, in which sensors gather data on customers’ use of products and their performance, enabling predictive maintenance, insight into future product enhancements, even customer-focused features and improvements, along with better customer service. All are based on deeper insights into users’ behavior, collected and aggregated from the products’ sensors. By outfitting products with smart sensors and connecting them to key systems and networks – and even to each other – manufacturers are replacing transaction-oriented relationships with whole-lifecycle engagement.

An Expanding IoT Influence

With its proven efficiency and productivity gains, it’s no wonder the demand for IoT devices is exploding. According to IDC, 60% of global manufacturers are using analytics to sense and analyze data from connected products and manufacturing. By 2018, IDC says, the proliferation of advanced, purpose-built, analytic applications aligned with IoT will result in 15% productivity improvements for manufacturers regarding innovation delivery and supply chain performance.

Mining? Yes. Oil and gas drilling? Sure. Manufacturing? Certainly. But IoT is not limited to these sectors. Many companies in consumer-facing sectors will also experience change from IoT, from banking to retail to airlines. Connected products and smart manufacturing are here to stay, and they’ll be all around us.

[Download]: How manufacturers can unlock value with IOT analytics

This article originally appeared on the Digitally Cognizant Blog

Cognizant

Cognizant (Nasdaq: CTSH) is dedicated to helping the world’s leading companies build stronger businesses — helping them go from doing digital to being digital.

Share this:
Continue Reading

Manufacturing

How industrial manufacturing gets smarter with sensors

Cognizant

Published

on

Share this:

Sponsored by Cognizant

Today’s manufacturers are on the cusp of a fourth industrial revolution, in which internet-connected sensors (aka, the Internet of Things, or IoT) make physical machines and objects more intelligent. To realize the promise of industrial IoT, however, companies must combine operational technology with enterprise IT, and collect and analyze data across the entire manufacturing ecosystem to generate actionable and valuable insights.

By doing so, manufacturers can better manage production, address customization requirements and add value. In turn, they can more intelligently manage their businesses, improve response time, promote innovation, reduce costs and boost revenues. In our view, here’s how forward-thinking executives should be thinking about the opportunity.

The Future Has Already Arrived

Rolls-Royce has built engines since 1915. Today, however, the fabled company sells a whole lot more than just engines. In an industry where fuel savings can add up to millions each year, Rolls-Royce now provides airlines with information to help optimize routes, altitude, airspeed, weight and freight – this in addition to supplying the engines themselves. Along the way, Rolls-Royce engineers learn how its engines perform in a range of conditions, which they then use to inform the design of their next generation.

Related: Stepping into digital with IoT – 14 Case Studies

In short, Rolls-Royce exemplifies the opportunities and benefits of industrial IoT. And this iconic company is not alone. Shell Oil is pioneering simulation technology to help oil and gas operators manage offshore assets, improve worker safety and better predict maintenance. Stanley Black & Decker is already adding digital technologies to its entire line of customer tools, hydraulics, fasteners and electronic security devices.

All told, the list is long and diverse, covering equipment manufacturers, pharmaceuticals companies, medical device manufacturers and many other sectors. According to a recent MPI study, which surveyed 350 manufacturers, almost two-thirds (63%) believe IoT will have measurable impact on their business in the next five years. By 2020, IDC predicts that 50% of the Global 2000 will depend on digitally enhanced products.

This is because industrial IoT promises a single view of analytical data to operate with real-time agility and quickly respond to adverse events within the plant or supply chain. This requires integrating and consolidating enterprise and operational applications, however, which have largely remained isolated from one another. Until now.

[Download]: Stepping into digital with IoT – 14 Case Studies

Beyond connecting devices to a network where they interact and exchange information, the real value of industrial IoT lies in the data generated from these important relationships. Unlike traditional software applications, industrial IoT is rooted in physical space — integrating data from digital devices and systems in factories and supply chains with enterprise assets. It enables enhanced monitoring, data gathering and integration, role-based information presentation and situational awareness reports for operators. The objective is to convert operational data into insights that inform decision-making, drive innovation and realize greater efficiency.

Getting Started with the Right Questions

That said, many manufacturing leaders already recognize the need for industrial IoT. They struggle, however, with the complex and siloed landscape of their manufacturing landscape, including processes, IT and operational technology. To that end, we advise decision-makers to conduct a self-assessment and organizational readiness analysis by answering the following questions:

    • What changes do we need in our business processes, operations, people and business models to respond to rapid market changes, new developments and emerging technologies?
    • What kind of talent do we need?
    • Where can our organization benefit most from a deeper understanding of operations and efficiency?
    • How can we assess our readiness for an IoT transformation, and how should we benchmark our peers?
    • What budget should we set for additional computational capacities, and for security and storage capabilities?
    • What is preventing us from a transformation? Legacy systems? Cost pressures?
    • Besides cost, what internal barriers do we need to overcome?

To help with those answers, leadership must compare approaches, examine the readiness of its technical architecture, understand the organization’s capacity to change, and review available case studies. They must also engage with partners with the required domain expertise as well as hands-on experience in deploying industrial IoT technologies. In our experience, successful journeys take manageable steps such as designing and installing sensor technology; implementing faster and more efficient interconnectivity between the enterprise, business units and production facilities; developing analytics; and piloting use cases that not only demonstrate the promise of the industrial IoT but also realize its value at scale. In proceeding this way, manufacturers develop and grow the talent, skills and tool-sets necessary to build a connected ecosystem that seamlessly integrates digital, operational and information technology.

[Download]: Stepping into digital with IoT – 14 Case Studies

Organizations that align both IT and operational technology to create a “system of systems,” instrumenting every device in the extended manufacturing ecosystem, will be best positioned to harvest meaningful data at every touchpoint. Only then will manufacturers be able to benefit from the improved yields, additional value and greater efficiency that industrial IoT can produce.

This article originally appeared on Cognizant.com
Cognizant

Cognizant (Nasdaq: CTSH) is dedicated to helping the world’s leading companies build stronger businesses — helping them go from doing digital to being digital.

Share this:
Continue Reading

Featured